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Abstract|We describe a method for normalization in 3D
PET for use with model-based image reconstruction meth-
ods. This approach is an extension of previous factored nor-

malization methods in which we include separate factors for
detector sensitivity, geometric response, block e�ects and

deadtime. Since our MAP reconstruction approach already
models some of the geometric factors in the forward pro-
jection, the normalization factors must be modi�ed to ac-

count only for e�ects not already included in the model.
We describe a maximum likelihood based approach to joint

estimation of the normalization factors which we apply to
data from a planar source. We then compute block-wise
and block-pro�le deadtime correction factors using singles

and coincidence data, respectively, from a multiframe cylin-
drical source. We have applied this method for reconstruc-
tion of data from the LSO Concorde P4 microPET scanner.

Preliminary results compare favorably with those obtained
using normalization based directly on cylindrical phantom

measurements.
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I. Introduction

Accurate normalization is essential for accurate quanti-
tative 3D PET. Inaccuracies in normalization factors can
result in artifacts, poor uniformity, and increased noise in
the reconstructed images. Traditional solutions to the nor-
malization problem include direct and component-based
methods. In direct methods, a known source of activity
is scanned, then the normalization factors are estimated
as the ratio between the ideal number of coincidences and
those actually measured [1]. The main problem with this
method is that it requires that a very large number of
counts be detected to achieve acceptable statistical accu-
racy for each line or response (LOR). To maximize the
number of counts over all LORs, direct approaches typi-
cally use a uniform cylindrical source. Unfortunately, this
introduces its own problems since the observation model is
complicated by a substantial scatter fraction.

Ho�man [2] proposed a component-based method which
divides the normalization factors into detector eÆciency
and spatial distortion correction, which accounts for the
radial mispositioning due to the geometry of the scanner.
This model reduces the number of counts required by re-
ducing the degrees of freedom in the normalization model
so that the normalization factors are computed by averag-
ing over multiple LORs. Casey [3] and Badawi [4] extended
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this concept to develop sophisticated models accounting
for a wide variety of factors a�ecting detection eÆciency.
Casey's normalization model includes intrinsic detector ef-
�ciency, geometric factors, crystal interference and dead-
time factors, Badawi added time-alignment factors and a
count-dependent block-pro�le to this model.
These models are complex and involve the sequential es-

timation of multiple types of normalization factors, often
from di�erent data sets. This can lead to inconsistent es-
timates since the normalization models are multiplicative.
While optimal estimation of individual components, e.g.
the detector eÆciencies [1], [5], have previously been inves-
tigated, joint estimation of all factors in the component-
based models has not, to the best of our knowledge, pre-
viously been described. Here we present a uni�ed model
in which all factors are estimated simultaneously within
a maximum likelihood framework. This model is speci�-
cally matched to the model-based Maximum A-Posteriori
(MAP) reconstruction methods [6]. The combination of
our previously described system model with matched nor-
malization allows us to explicitly account for the imperfec-
tions in the line-integral model using an accurate physical
and statistical model for coincidence detection. In this way
we build on our previous model, which included e�ects of
detector solid angle, photon pair non-colinearity and in-
tercrystal scatter and penetration, to also include e�ects
arising from the block design, individual detector eÆcien-
cies, geometric e�ects, and deadtime.

II. Methods

A. Normalization within a statistical image reconstruction

framework

We have developed a MAP estimation algorithm to re-
construct 3D PET images [6]. In this approach, the data
are modeled as:

y = Px+ r+ s (1)

where y is the mean of the data, x is the source distribu-
tion, r is the mean of the randoms, and s is the mean of
the scattered events. P is the system matrix describing the
probability that an event is detected, which we factor as:

P = PnormPblurPattnPgeom (2)

where Pgeom is the geometric projection matrix describing
the probability that a photon pair reaches the front faces
of a detector pair in the absence of attenuation and assum-
ing perfect photon pair colinearity. Pblur models photon
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pair non-colinearity, intercrystal scatter and crystal pene-
tration, Pattn contains attenuation correction factors for
each detector pair, and Pnorm is a diagonal matrix con-
taining the normalization factors.

The e�ects of solid angle variation at the detectors rel-
ative to the position of each voxel along a line of response
and the angle between the detector surface and the LOR
are accounted for in Pgeom. Similarly, the e�ects of crystal
penetration that result in mispositioning of events towards
the edge of the �eld of view is included in Pblur. Con-
sequently, these need not be included in the normalization
factors as they are in previous factored methods [3]. Never-
theless, there are geometric factors that are not accounted
for in (2) that we include in our normalization model as
described below.

The normalization model we use here is that the diagonal
matrix Pnorm has elements

Pnorm(i; i) = "d1i"d2ig(l; j; k)
i�b1i;b2idd1idd2i (3)

where we have used i to index the LORs. The speci�c
detectors forming this LOR are denoted d1i and d2i, and
b1i and b2i are the blocks containing these detectors. The
components of this model are as follows:

Geometric factors g(l; j; k)i: (l; j; k)i represent, respec-
tively the radial position l, the view angle j, and the sino-
gram index k, associated with LOR i. The sensitivity of
each LOR is a function of the position of the two detec-
tors in the block and the distance of the LOR from the
center of the �eld of view of the scanner. Our geomet-
ric factor essentially combines the geometric and block-
interference patterns of [3] into a single factor. Since the
scanner is highly symmetric both axially and transaxially,
many LORs are equivalent in these respects. The average
number of LORs sharing the same block and radial posi-
tions is approximately 2.3 � 168 (the number of blocks in
the Concorde scanner - 336 detectors for each of 32 rings in
blocks of 8 by 8). Fig. 1 illustrates the symmetries of the
LORs with respect to the blocks that we use in comput-
ing the normalization: each LOR can have up to an 8-fold
symmetry with respect to a single block. This pattern then
repeats every 8 detectors for an 8 by 8 block design.

Detector eÆciency "d1i ; "d2i : these quantities describe
the intrinsic eÆciencies of the two detectors forming the
LOR. The total number of these factors is equal to the
number of detectors.

Time-alignment factor �b1i;b2i : The time alignment fac-
tor is based on the model proposed by Badawi [4] to ac-
count for di�erences in timing synchronization between dif-
ferent blocks. As the timing windows become misaligned
between any pair of blocks, so the detection eÆciency will
drop. We can characterize the timing properties of each
block by a single delay factor. The time-alignment factor
for each LOR is then a function of the di�erence between
the delay factors for the two blocks for that LOR. The
form of this function can be determined experimentally by
varying the timing between a pair of blocks. We have not
yet performed this experiment so that in the results pre-

Fig. 1. The geometric factors are functions of the radial position of
the LOR and the positions of the two detectors within their respective
blocks. Illustrated here for a 4 by 4 block detector system is a four-
fold symmetry in these factors. An additional two fold symmetry
results from rotating and axially translating the LORs so that each
of the four blocks on the right of the �gure moves to the location of
the left most block.

sented below we instead estimate directly a separate time-
alignment factor for each pair of blocks.

Deadtime factor dd1idd2i : the deadtime factors are esti-
mated separately as described in Section II-C.

B. Normalization factor estimation

We compute the normalization factors from the previous
section using a joint optimization procedure. This di�ers
from the common practice of using rotating rod sources
to compute geometric factors and cylinder data to com-
pute geometric eÆciencies [3], [4]. This provides self con-
sistent estimates of the unknown parameters. Moreover,
by basing the estimation on the model (1), the normaliza-
tion is matched to the speci�c forward projection model
that we subsequently apply during reconstruction. For the
plane source used in our studies, scatter is minimal and we
currently ignore scatter contributions. For the Concorde
microPET scanner, data is initially collected in listmode
format so that we can re-sort into simultaneous prompt
and delayed event sinograms. Prior to computing the nor-
malization factors, we use a Bayesian technique to estimate
the mean of randoms from the separate randoms sinogram
[7].

We model the measurements as Poisson using the model
(1) to give the log likelihood:

L(Pnorm) =
NX
i=1

yi logf"d1i"d2ig(l; j; k)
i�b1i;b2i [Px]i + rig

�f("d1i"d2ig(l; j; k)
i�b1i;b2i)[Px]i + rig (4)

The source distribution x is the known plane source.
We estimate the parameters by maximizing L(Pnorm) us-
ing a grouped coordinate ascent method, updating each
of the di�erent factors in turn using steepest ascent with
a Newton-Raphson line search. We �nd in practice that
e�ective convergence is reached in 5 iterations with 3 sub-
iterations of line search at each main iteration.
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C. Deadtime estimation

We assume for the purposes of computing the count-
independent normalization factors, that the plane source
is of suÆciently low activity that deadtime e�ects are min-
imal. This assumption is reasonable for the LSO detectors
in the Concorde scanner for which deadtime factors are
considerably lower than they would be for a BGO system.
Deadtime is a�ected by the properties of the PMT and

detection electronics [4]. Rather than adopt the exponen-
tial model that was developed by Casey [3], we instead use
an empirical quadratic correction method [4] which relates
observed and true singles rates at each block by

�t =
�a

1 + ��a + ��2a
(5)

where �t is the true singles rate, �a is the detected count
rate, and � and � are experimentally determined param-
eters. We allow a separate deadtime calibration of this
type for each detector block in the system, based on the
measured singles rate for that detector block.
Block detectors also exhibit an additional deadtime ef-

fect, characterized by gradual mispositioning of events to-
wards the middle of the block as the count rate increases [8],
[4]. This mispositioning contributes to a count dependent
variation of sensitivity across the detector blocks, which
we report on below. Our results indicate that these varia-
tions are signi�cant so that we include these factors in our
deadtime correction.
Thus our overall deadtime model for each detector di,

similar to that in [4], is the product of the misposition-
ing deadtime dmp(di) and PMT and electronics deadtime
dpp(bi):

ddi = dmp(bi)� dpp(di) (6)

where bi is the block containing detector di. The deadtime
correction factor for each LOR is then the product of the
factors for the two detectors forming the LOR.
We estimate the factors dmp(bi) by observing the singles

rate at each detector block over a series of I frames, taken
as an F-18 source decays over the expected range of ac-
tivities for the scanner. Since the LSO detectors have a
natural background activity, we model the true activity at
the block as

�(t) = Ae��t + C (7)

where A is the initial singles rate, � is the decay constant,
and C is the background activity. Integrating this activity
over the duration of each frame from time ti to ti+T and
applying the deadtime model (5) we obtain the series of
equations:

A

��T

h
(e��(ti+T ) � e��ti)

i
+ C =

�a;i

1 + ��a;i + ��2a;i
(8)

for i = 1; : : : I where �a;i is the observed total singles rate
at the ith block and � and � are the constants to be es-
timated. This set of equations are solved using nonlinear
least squares to obtain a separate pair of parameters for
each detector block. The mispositioning deadtime param-
eters were computed as described in [5].

III. Experimental studies

A. Plane source experiments

Using the method described above, we estimated nor-
malization factors for the Concorde MicroSystems P4 mi-
croPET scanner. We acquired data for a 90x200x2mm
plane source of volume 38cc �lled with 700 �Ci of FDG.
The �rst frame was collected for 20 minutes, the source
was then rotated by 30 degree increments, with frame du-
rations adjusted to achieve approximately equal counts in
each frame. We windowed each sinogram to take only lines
of response within �15o of the normal to the plane. The
set of six windowed sinograms were then used to estimate
the normalization factors.

B. Deadtime experiments

A 221.6cc cylinder, diameter 5cm and length 15.5 cm,
containing 4.80 mCi F-18 solution was scanned for 19
frames. The duration of each frame was 600s with each
new frame starting 0.5 half-lives after the previous one.
The average singles rate for the �rst frame for each block
was 1:43� 105, the average singles rate for the last frame
was 827 (which was largely due to background radiation
from LSO). The listmode format from the scanner allows
us to acquire separate prompt and delayed sinograms and
the singles rates for each individual detector block. These
data were used to compute the deadtime factors.

C. Cylinder uniformity

Using the new normalization factors, we reconstructed
a 5 cm diameter uniform cylinder. For comparison, we
used a normalization �le generated directly from a 2 hour
duration frame from a uniform cylinder.

IV. Results

Shown in Fig 2 are the block-wise and block-pro�le com-
ponents of the deadtime correction factors. Fig 2(a) shows
the excellent count-rate linearity for the LSO block detec-
tors in the scanner over a wide activity range. The block-
pro�le results indicate that these factors introduce signi�-
cant count-dependent variations in sensitivity as a function
of position in the block which should be included as part
of the normalization process.
In Figs. 3 and 4 we show the e�ects of applying the

model-based normalization procedure described here to re-
construction of a uniform cylinder compared to direct nor-
malization based on a uniform cylinder. In both cases, the
images were reconstructed using 30 MAP iterations with all
algorithm parameters otherwise equal. Fig. 3 shows a sin-
gle transaxial plane, and a pro�le through this plane, from
the reconstructed cylinder. These results indicate some im-
provement in transaxial uniformity and a small reduction
in noise. The latter observation was veri�ed by computing
region of interest variances which found a reduction in the
percent standard deviation to mean ratio from 20% to 18%.
The rise in activity towards the edge of the �eld of view
that can be seen in both pro�les is caused by the presence
of scatter in the sinograms which was not corrected for in
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Fig. 2. Deadtime correction factors: (a) results from �tting the
quadratic deadtime model to singles data from a 4.8mCi cylinder;
shown are the measured vs. true singles rates for 8 di�erent block
detectors; (b) transaxial block pro�le factors computed from coinci-
dence data for a measured singles rate of 20K for 8 di�erent detector
rings; (c) axial block pro�le from same data as (b).

these studies. Fig. 4 shows the axial uniformity as the total
activity in each of the 63 reconstructed slices. Apart from
over-correction in the �rst few planes, the model-based nor-
malization produces improved axial uniformity compared
to the direct normalization method.

The preliminary results presented show encouraging, if
small, improvements in image uniformity compared to a
direct normalization procedure. Further improvements
should be realized as we re�ne our model. In order to com-
pute the normalization factors in our approach, we must
know the position of the plane source relative to the sino-
gram space. Currently we do this by comparing the mea-
sured plane source sinograms with the forward projection
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Fig. 3. Central plane of reconstructed cylinder. Left: model-based
normalization; right: direct normalization.
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Fig. 4. Axial pro�les of reconstructed cylinder using model-based
and direct normalization.

of a simulated plane source, whose angle is adjusted so
that the two sinograms match. Our procedure for perform-
ing this matching needs further re�nement. We will also
modify the time-alignment factor parameterization as we
describe in Section II-A. Finally, we will include compen-
sation for scatter to perform a full quantitative evaluation.
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